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An approximate method for analyzing the free vibration of right triangular plates with
arbitrary variable thickness and various boundary conditions is proposed. In this paper,
a right triangular plate is considered as a kind of rectangular plate with non-uniform
thickness. Therefore, the free-vibration characteristics of any right triangular plate are
obtained by analyzing the equivalent rectangular plate with non-uniform thickness. The
approximate method is based on the Green function of an equivalent rectangular plate.
The Green function of a rectangular plate with arbitrary variable thickness is obtained as
a discrete-form solution for deflection of the plate with a concentrated load. By applying the
Green function, the free-vibration problem of plate is translated into the eigenvalue problem
of matrix.
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1. INTRODUCTION

The determination of the free-vibration frequencies of right triangular plates is an
important engineering problem. Thin right triangular plates with uniform thickness have
been studied by many researchers. Gorman [1-3] exploited the superposition method for
analyzing the problem of obtaining the eigenvalues and mode shapes for the right triangular
plates with combinations of clamped-simply supported boundary conditions. Lam et al. [4]
obtained the natural frequencies and mode shapes of triangular plates by applying the
Rayleigh—Ritz method. Liew [5] analyzed the natural frequencies of triangular plates with
curved internal supports. Liew and Lim [6] studied the transverse vibration of trapezoidal
plates of variable thickness and showed the natural frequencies of triangular plates as
a special case of trapezoidal plates. Saliba [7, 8] reported the modified superposition
method to confirm the successful superposition principles and provided numerical data and
mode shapes for right triangular plates with all possible combinations of clamped and
simply supported boundary conditions. Kim and Dickinson [9] gave a straightforward and
simple method by applying the Rayleigh-Ritz method for the free vibration of thin, right
triangular plates which may have any combination of free, simply supported or clamped
boundary conditions. For the right triangular plates with linearly varying thickness, Mirza
and Bijlani [10] solved the problem of the natural frequencies and mode shapes of
cantilevered triangular plates with linearly variable thickness by using the finite element
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technique. As a special case of trapezoidal plates, Liew et al. [11] analyzed the free vibration
of triangular plates with linearly varying thickness in one direction by the Rayleigh-Ritz
method. Singh and Saxena [12] investigated a general triangular plate with the thickness
varying linearly as a function of the co-ordinates in the plane of the plate. McGee and
Giaimo [13] analyzed three-dimensional vibrations of cantilevered right triangular plates
with moderate thickness. Kitipornchai et al. [14] investigated free vibration of isosceles
triangular Mindlin plates. Liew et al. [15] analyzed three-dimensional vibrations of
cantilevered right triangular plates as a case of skewed trapezoids.

In this paper, an approximate method for analyzing the free vibration of thin or
moderately thick, right triangular plates with arbitrary variable thickness is proposed.
A right triangular plate can be considered finally as a kind of rectangular plate with
non-uniform thickness. Namely, a right triangular plate can be translated into
a circumscribed rectangular plate whose additional part has the same thickness as that of
the original part or extremely thin thickness compared with it and some intermediate point
supports along the original diagonal edge according to its boundary condition. Therefore,
the free-vibration characteristics of any right triangular plate are obtained by analyzing an
equivalent rectangular plate with non-uniform thickness.

The approximate method is based on the Green function of an equivalent rectangular
plate. The Green function of a rectangular plate with arbitrary variable thickness is
obtained as a discrete-form solution [16] for deflection of the plate with a concentrated
load. The discrete-form solution is obtained at each discrete point equally distributed on the
plate. By applying the Green function, the free-vibration problem of plate is translated into
the eigenvalue problem of matrix. The convergence and accuracy of the numerical solutions
for the natural frequency parameter calculated by the proposed method are investigated,
and the lowest eight frequency parameters and their modes of free vibration are shown for
some right triangular plates.

2. DISCRETE GREEN FUNCTION OF RECTANGULAR PLATE WITH
NON-UNIFORM THICKNESS AND POINT SUPPORTS

The Green function of a plate-bending problem is given by the displacement function of
the plate with a unit concentrated load, so the Green function w(x, y, x,, y,)/P of rectangular
plates can be obtained from the fundamental differential equations of rectangular plate with
a concentrated load P at a point (x,, y,), non-uniform thickness and point supports at each
discrete point (x., y4) shown in Figure 1, which are given by the following equations:
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Figure 1. Position of point support.

where Q,, Q, are the shearing forces, M,, is the twisting moment, M,, M, are the bending
moments, 0,, 0, are the slopes, w is the deflection, D = Eh*/12(1 — v?) the bending rigidity,
E, G the modulus, shear modulus of elasticity, v the Poisson ratio, h = h(x, y) the thickness
of the plate, t; = h/1-2, P, the vertical reaction, P,4, Ps., the moment reactions around the
x- and y-axis and o(x — x.), (y — y4) are the Dirac’s delta functions.

By introducing the following non-dimensional expressions,

2
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the differential equations (1a)-(1h) are rearranged together as follows:
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where t = 1-8, u = bj/a, n = x/a, { = y/b, Dy = Eh3/12(1 — v?) is the standard bending
rigidity, h, the standard thickness of a plate, a, b the breadth, length of a rectangular plate,
[P, Picas Preas Psea] = [Pa, Pyoga, Pog, — Psed]/Do(1 — v?) O, the Kronecker’s delta, and
Fite, Foye, F,. are defined in Appendix A.

3. DISCRETE SOLUTION OF FUNDAMENTAL DIFFERENTIAL EQUATION

By applying the method used in reference [ 16], with a rectangular plate divided vertically
into m equal-length parts and horizontally into n equal-length parts as shown in Figure 2,
the plate can be considered as a group of discrete points which are the intersections of the
(m + 1)-vertical and (n + 1)-horizontal dividing lines. In this paper, the rectangular area,
0 <y <, 0<{ <, corresponding to the arbitrary intersection (i, j) as shown in Figure 2
is denoted as the area [i, j], the intersection (i, j) denoted by @ is called the main point of
the area [, j], the intersections denoted by O are called the inner-dependent points of the
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Figure 2. Discrete points on plate.

area, and the intersections denoted by @ are called the boundary-dependent points of the
area.

By integrating equation (2) over the area [i, ], the following integral equation is
obtained:

n; Cj
< P f (X0, &) — Xol, 0)] dn + Fane j [X (10 ) — X0, )] d
Z ni Cf
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where

u( —ne) = 0(i<e), 0-5(i = ¢), L(ide),  u(l; — La) = 0(j<d),0:5(j = d), 1(j>d).

Next, by applying the numerical integration method the simultaneous equation for the
unknown quantities X,;; = X.(n;, {;) at the main point, (i, j) of the area [J, j] is obtained as
follows:
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The solution X,;; of the simultaneous equation (4) is obtained as follows:
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where p=1,2,...,8,i=1,2,....,m, j=1,2,...,n, and A
Appendix B.

In equation (5), the quantity X ,;; at the main point (i, j) of the area [, j] is related to the
quantities X .o and X ¢, at the boundary-dependent points of the area and the quantities
Xexj» Xen and X, at the inner dependent points of the area. With the spreading of the area
[i, jT according to the regular order as [1, 1], [1, 2], ...,[1,n], [2, 1], [2, 2],...,[2, nn], ...,
[m, 1], [m, 2], ...,[m, n], a main point of smaller area becomes one of the inner-dependent
points of the following larger areas. Whenever the quantity X ,;; at the main point (i, j) is
obtained by using equation (5) in the above-mentioned order, the quantities X ;, X .4 and
X at the inner-dependent points of the following larger areas can be eliminated by
substituting the obtained results into the corresponding terms on the right-hand side of
equation (5). By repeating this process, the equation X ,;; at the main point is related to only
the quantities X ;o (v = 1,3,4,6,7,8) and X, (s = 2,3,5,6,7,8) which are six independent
quantities at each boundary-dependent point along the horizontal axis and the vertical axis
in Figure 2 respectively. The result is as follows:

pes Bpes Cperts Vpy are defined in
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f=1c¢=0d=0

where (Qy) = X1, (Qx) = X,, (Mxy) = X3, (My) =Xy, (Mx) =Xs, (ey) = Xe, (Qx) = X,
(w) = Xg, and aypijuvs qpijea> dspi; are defined in Appendix C.

Equation (6) gives the discrete solution of the fundamental differential equation (2) of
plate-bending problem, and the discrete Green function of a plate is obtained from
Xsgi; = G(xi, yj» Xg» ¥)- [Pa/Do(1 — v*)] which is the displacement at the point (x;, y;) of
a plate with a concentrated load P at a point (x,, y,).

4. INTEGRAL CONSTANT AND BOUNDARY CONDITION OF
RECTANGULAR PLATE

The integral constants (Qyko (Mapos -+ (Whos (Q:ors (Ma)ois ... (w)os being involved in
the discrete solution (6) are to be evaluated by the boundary conditions of a rectangular
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Figure 3. (a) Plate with simple edges and fixed edges. (b) Plate with simple edges and free edges. (c) Cantilever
plate.

plate. The combinations of the integral constants and the boundary conditions for some
cases are shown in Figures 3(a)-3(c), in which the integral constants and the boundary
conditions at the four corners are shown in the boxes. The integral constants and the
boundary conditions along the four edges are given at each of the equally spaced discrete
points. In this paper, simply supported, fixed and free edges are denoted by solid line ),
thick solid line (me==) and dotted line (----- ) respectively.

5. EQUIVALENT RECTANGULAR PLATE OF RIGHT TRIANGULAR PLATE

A right triangular plate is different from a rectangular plate, but it is considered as a kind
of rectangular plate by translating into a circumscribed equivalent rectangular plate with
non-uniform thickness and intermediate point supports, whose additional part is
considered theoretically to have the same thickness as that of the original part or extremely
thin thickness compared with the original part according to the boundary condition of the
diagonal edge of the original plate.

The thickness of the actual part of the original right triangular plate is expressed by hy,
and the thickness of the additional part of each equivalent rectangular plate is expressed by
h in this paper.

Typical translations from some original right triangular plates to their equivalent
rectangular plates are shown in Figure 4. In Figure 4, a fixed diagonal edge of the original
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plate is translated into a line with some equally arranged point supports shown by the thick
dotted line (++--- ) and an additional equally thick part with two fixed edges. The values of
three reactions Py, Ps.q, Pscq at each point support of the equivalent plate are determined
by the following three conditions:

0, = 0,sino + 0, cosoe =0, 0, =0, cosa —0,sino =0, w=0,

where
o =tan” *(b/a).

The first condition means that the slope around the tangential axis of the line of point
supports is zero at each point support. The second condition means that the slope around
the normal axis of the line of point supports is zero, and the third condition means zero
deflection at each point support. In Figure 4, a simply supported diagonal edge of the
original plate is translated into a line with some equally arranged point supports shown by
the thick dotted line (++--- ) and an additional extremely thin part with two free edges. In
this case the values of three reactions Py, Ps.4, Pscq at €ach point support of the equivalent
plate are determined by the following three conditions:

M, = M,sin” o« + M, cos® o + 2M,, sinacosa =0,  0,=0, w=0.

The first condition means that the bending moment around the tangential axis of the line of
point supports is zero at each point support. The second condition means that the slope
around the normal axis of the line of point supports is zero, and the third condition means
zero deflection at each point support. In Figure 4, a free diagonal edge of the original plate is
translated into an additional extremely thin part with two free edges.

In the free-vibration analysis of the equivalent rectangular plates for each right triangular
plate, the mass of the additional triangular part is treated as equal to zero.

Fixed diagonal Simply supported Free diagonal

diagonal
c * f f
. A K
" "
',
S, h=h s h«hy . hehy
...‘Q "
%, c *, s f
s, s
»
s, . h
Iy s, By %, 0
» .
. .
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Figure 4. Triangular plates and their equivalent rectangular plates.
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6. CHARACTERISTIC EQUATION OF FREE VIBRATION OF RECTANGULAR
PLATE WITH NON-UNIFORM THICKNESS AND POINT SUPPORTS

By applying the Green function w(x,, yo, X, y)/P which is the displacement at a point
(xo, Vo) of a plate with a concentrated load P at a point (x, y), the displacement amplitude
W(xg, Vo) at a point (xg, yo) of the equivalent rectangular plate during the free vibration is
given as follows:

b pra
(o yo) = j j pheo*(x, Y)[W(xo, yo. x, 3)/P] dx dy, )

0JO

where p is the mass density of the plate material.
By using the non-dimensional expressions,

4 Pohow’a® ~ p(x,y) h(x,y) _W(x, y)
=iy 0= W0 =T

w(Xo, Yo, X, ¥) Do(1— Vz)

G(’I0> CO) n, C) = Pa >

where p, is the standard mass density the integral equation (7) can be rewritten as follows:

Wino, Lo) = f 0 j WA H (0, DG o, Lo, )W, 0) dp dL. ®)

By applying the numerical integration method mentioned in Section 3, equation (8) is
discretely expressed as

KWy = z Z ﬁmiﬁnjHiijlij Wi, K= 1/(,“/14)- )

i=0j=0

From equation (9) homogeneous linear equations in (m + 1) x(n + 1) unknowns Wy,
Wotseoos Wous Wios Witseoos Wins ~, Wio, W, ..., W, are obtained as follows:

M=

L (ﬁmiﬁnjHiijlij — Kéik(sjl)VVij =0 (k=0,1,...,m, I=0,1,...,n). (10)

(0]

i=0j

The characteristic equation of the free vibration of the equivalent rectangular plate is
obtained from equation (10) as follows:

I(00 KOl KOZ KOm
KlO Kll K12 Klm
KZO K21 K22 KZm = 07 (11)

I(mO I(ml I(m2 I(mm
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where
ﬁnOHjOGinO_Kéij ﬂanjl Ginl ﬁnZHjZGinZ ﬁnnHjnGinn
BuoH o Gitjo BuiH;j1Gi1j1 — K0y B2l ;2Gi1 > BunH juGi1 jn
Klj:ﬂm_] ﬁnOHjOGiZjO ﬂanjl GiZjl ﬂnZHjZGiZjZ_Kéij ﬁnnHjnGiZjn
BnOHjOGinjO Banjl Ginjl ,[))nZHjZGian ﬁnnHjnGinjn_Kéij_

7. NUMERICAL WORK

Numerical solutions for the natural frequency parameter A and the mode have been
investigated for some thin, non-uniform or moderately thick triangular plates. The
convergent values for the natural frequency parameter / have been obtained by using
Richardson’s extrapolation formula for two case of combinations of numbers of division
m and n. In all the tables and figures, the symbols s, ¢ and f denote simply supported,
clamped and free edges, respectively, the first indicating the conditions at y = 0 ({ = 0), the
second at the hypotenuse and the third at x = 0 (y = 0). In this paper, the numerical results
are shown within three cases of boundary conditions scs, sss and cff.

7.1. CONVERGENCE AND ACCURACY OF NUMERICAL RESULTS FOR RIGHT TRIANGULAR
PLATES WITH UNIFORM OR LINEARLY VARYING THICKNESS

In order to examine the convergence of numerical values for the natural frequency
parameter 4 obtained from the proposed method and determine the suitable values of the
thickness ratio h/h, of the extremely thin part thickness h and the actual part thickness h,
and the numbers of division m and n, the lowest eight natural frequency parameters for three
or two cases of right triangular plates shown in Figure 5 were analyzed. In this case, these
plates have uniform thickness and an aspect ratio b/a = 1. The results are shown in Figures
6(a)-6(c), 7(a) and 7(b). These show a good convergence of numerical solutions by the
proposed method. After studying the curves of Figures 6(a)-6(c), 7(a) and 7(b), it seems
actually sufficient to set the thickness ratio h/hy, < 3 for the right triangular plate with
simply supported or free diagonal edge and the number of division m(=n) > 12 for scs right
triangular plates and m(=n) > 10 for sss and cff right triangular plates.

In order to demonstrate the accuracy of numerical results for the natural frequency
parameter 4 obtained from the proposed method, the lowest eight natural frequency
parameters for the four right triangular plates with two aspects ratios, b/a = 1 and 1-5 are
presented in Tables 1(a)-(c) and compared with previously published results by Kim and

hy

Figure 5. Right triangular plates with various boundary conditions.
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TABLE 1(a)

Natural frequency parameters A for scs right triangular plates

b/a = 1, uniform b/a = 1-5, uniform
m m
Extra- Reference Extra-  Reference
Mode 16 16 polation [9] 16 18 polation [9]
1 8-602 8:548 8343 8305 7-196 7-149 6973 6-940
2 11-945 11-804 11-272 11-267 9-785 9:669 9-233 9-230
3 13-374 13-246 12-766 12-726 11-356 11-238 10-796 10-768
4 15697 15:396 14-261 14-378 12:598 12:365 11-486 11-:556
5 16-758 16-483 15-446 15-575 14-177 13-924 12-973 13-080
6 18-492 18-:220 17-198 17-288 15-616 15-227 13-762 13:915
7 19-902 19-334 17-193 — 15-828 15-547 14-489 —
8 20-709 20-176 18:170 — 17-363 16-898 15-146 —
TaBLE 1(b)
Natural frequency parameters A for sss right triangular plates
b/a = 1, variable b/a = 1-5, uniform
m m
Extra-  Reference Extra-  Reference
Mode 14 16 polation [11] 14 16 polation [9]
1 6914 6-826 6:539 6:592 6291 6211 5952 5995
2 9923 9-705 8992 9-162 8981 8-793 8-180 8298
3 11-405 11-229 10-652 10-693 10-492 10-312 9-726 9-820
4 13-187 12-881 11-882 11-887 11-855 11-525 10-447 10-640
5 14-590 14-149 12-709 13-:074 13-:397 13-071 12-007 12-153
6 16:303 15918 14:662 14623 14929 14-478 13-008 13-028
7 16763 16-327 14-905 14-830 15-134 14-693 13-254 —
8 18-155 17-565 15-641 15746 16:614 16:069 14-289 —
TaBLE 1(c)
Natural frequency parameters A for cff right triangular plates
b/a = 1, variable b/a = 1-5, uniform
m m
Extra-  Reference Extra-  Reference
Mode 14 16 polation [11] 14 16 polation [9]
2714 2722 2748 2763 1-682 1-687 1-705 1736

0NN A W

4193 4196 4205 4217 3:488 3-492 3:506 3-563
4-889 4-908 4917 5:048 4-190 4204 4250 4:322
5768 5765 5756 5729 5-505 5-506 5-509 5-576
6:617 6-584 6-476 6-598 6-522 6-537 6-588 6:695
7-504 7-470 7-361 7-353 7-656 7-632 7-555 7-660
8:027 7-973 7-793 7-894 8-289 8270 8210 —

8-883 8:848 8733 8775 9-071 9-041 8941 —
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Dickinson [9] for the uniform thickness plates and by Liew et al. [11] for the linearly
varying thickness plates. The thickness ratio hq/a of these plates is 0-01. In these examples,
the scs plate and the sss and cff plates with the aspect ratio b/a = 1-5 have uniform thickness
and the sss and cff plates with the aspect ratio b/a = 1 have linearly varying thickness, and
the thickness variation of the triangular plates is as follows:
sss plate:  h(y, ) = ho(1 — 0-50), cff plate:  h(n, {) = ho(1 — ).

Tables 1(a)-1(c) show that a close agreement is achieved. In Figures 8(a)-8(c) the
corresponding nodal patterns are presented, and these are also confirmed to agree with the
nodal patterns given in references [9, 11].

N

N
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1st 2nd 3rd  4th N
}\ \ >\ 1st 2nd 3rd 4th
AN >>\ Q > Q >®
5th 6th 7th 8th [ % =
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) b\ \ ‘b
AN NN
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Figure 8. (a) Nodal patterns for scs right triangular plate: (a) a/b = 1; (b) b/a = 1-5. (b) Nodal patterns for sss
right triangular plate: (a) a/b = 1; (b) b/a = 1-5. (c) Nodal patterns for cff right triangular plate: (a) a/b = 1; (b)
b/a = 1-5.
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7.2. NUMERICAL RESULTS FOR RIGHT TRIANGULAR PLATES WITH VARIABLE THICKNESS

Numerical solutions for the lowest eight values of natural frequency parameter 1 of scs
and cff right triangular plates with two aspects ratios, b/a = 1 and 1-5 were analyzed. The
thickness variation of each right triangular plate is as follows:

scs plate:  h(n, {) = ho[1 + sin0-5n(n + )],
cff plate:  h(n, ) = ho[(1 — 0-5(n* + {?)).
The thickness ratio ho/a of these plates is 0-01. The results are presented in Tables 2(a) and

2(b). The corresponding nodal patterns are presented in Figures 9(a) and 9(b).

7.3. NUMERICAL RESULTS FOR RIGHT TRIANGULAR PLATES WITH MODERATE THICKNESS
Numerical solutions for the lowest eight values of natural frequency parameter 4 and the

corresponding nodal patterns of cff moderately thick right triangular plates with uniform

TABLE 2(a)

Natural frequency parameters 1 for scs right triangular plates with variable thickness

bla=1 bja=15
m m
Extra- Extra-
Mode 16 18 polation 16 18 polation
1 11-340 11-272 11-014 9-486 9-440 9-269
2 15-920 15-756 15-139 13-016 12-880 12-371
3 17-268 17-126 16-593 14-750 14-590 13-988
4 20-818 20-468 19-151 16-665 16-:390 15-357
5 21953 21-631 20420 18-729 18-435 17-328
6 23-634 23-288 21-985 20-582 20-077 18-178
7 26-181 25-536 23-105 20-176 19-919 18-953
8 26-982 26-389 24-156 22-957 22-407 20-336
TABLE 2(b)

Natural frequency parameters 1 for cff right triangular plates with variable thickness

bja=1 b/a =15
m m
Extra- Extra-
Mode 14 16 polation 14 16 polation

1 2-479 2-487 2-513 1-673 1-679 1-699
2 4-504 4514 4-545 3-243 3-249 3-270
3 5-459 5-473 5-520 3978 3-992 4-037
4 6724 6767 6-908 4990 4992 4997
5 7-885 7-933 8-:092 5913 5-929 5-980
6 9-051 9-075 9-154 6924 6912 6-870
7 9-787 9-749 9-623 7-430 7-414 7-363
8 10-357 10331 10-248 8-353 8-333 8268
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Figure 9. (a) Nodal patterns for scs right triangular plate with variable thickness: (a) a/b = 1; (b) b/a = 1‘5.
(b) Nodal patterns for cff right triangular plate with variable thickness: (a) a/b = 1; (b) b/a = 1'5.
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Figure 10. Convergence of natural frequency parameter A of cff moderately thick uniform right triangular plate
ho/a = 0-061, ho/h = 10 (b/a = 1).

and variable thickness were analyzed. The aspect ratio b/a is equal to 1, and the thickness
ratio hy/a is equal to 0-061. The thickness variation of the right triangular plate with
variable thickness is as follows:

cff plate: h(n, {) = ho(1 — 0-40).

The results for the convergence, nodal pattern and natural frequency are shown in Figures
10, 11 and Table 3 respectively. Figure 10 shows a good convergence of numerical solutions
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Figure 11. Nodal patterns for cff right triangular plates with moderate thickness: (a) uniform; (b) variable.

TABLE 3

Natural frequency parameters 1 for cff moderately thick right triangular plates

Uniform Variable
m m
Extra- Reference Extra-  Reference
Mode 12 14 polation [13] 12 14 polation [13]
1 2:438 2471 2-563 2-541 2:473 2:482 2:506 2:569
2 4775 4778 4-788 4-964 4-543 4-554 4-583 4713
3 5626 5-589 5488 5871 5343 5.359 5402 5-580
4 7-315 7-396 7-621 7-689 6749 6826 7-037 7-095
5 8516 8-594 8811 8997 7-906 7914 7-937 8242
6 9-584 9:671 9913 — 8940 8998 9-157 —
7 10-336 10-293 10-174 — 9-651 9-573 9-359 —
8 11-172 11-119 10971 — 10-440 10-377 10-202 —
TaBLE 4
Natural frequency parameters A for sss moderately thick right triangular plate
m
Reference
Mode 10 12 Extrapolation [14]
1 7-509 7:396 7139 6948
2 10-929 10-607 9-876 9-651
3 12-187 11-875 11-166 10-875
4 14-841 14-101 12-419 12-300
5 15676 14974 13-380 13-210
6 17-107 16:410 14-833 14-559
7 19-364 17-890 14-540 —
8 19-892 18-497 15-326 —




856 T. SAKIYAMA AND M. HUANG

by the proposed method, and Table 3 shows a satisfactory agreement with the previously
published results by McGee and Giaimo [13].

Other numerical solutions for the lowest eight values of natural frequency parameter /4 of
sss moderately thick right triangular plates with uniform thickness were analyzed. The
aspect ratio b/a is equal to 1, and the thickness ratio hy/a is equal to 0-0707. The results for
natural frequency are shown in Table 4, and it shows a satisfactory agreement with the
previously published results by Kitipornchai et al. [14].

8. CONCLUSIONS

Under the concept that a right triangular plate is considered as a kind of rectangular
plate with non-uniform thickness, an approximate method was proposed for analyzing the
free-vibration problem of various types of right triangular plates by using the Green
function of equivalent rectangular plates with non-uniform thickness.

As a result of numerical works, it was shown that the numerical solutions by the proposed
method has a good convergence and satisfactory accuracy for various types of thin and
moderately thick right triangular plates with uniform and variable thickness.

REFERENCES

1. D. J. GORMAN 1983 Journal of Sound and Vibration 89, 107-118. A highly accurate analytical
solution for free vibration analysis of simply supported right triangular plates.
2. D.J. GORMAN 1986 Journal of Sound and Vibration 106,419-431. Free vibration analysis of right
triangular plates with combinations of clamped-simply supported boundary conditions.
3. D. J. GORMAN 1987 Journal of Sound and Vibration 112, 173-176. A modified superposition
method for the free vibration analysis of right triangular plates.
4. K. Y. LAM, K. M. LiEw and S. T. CHOW 1990 International Journal of Mechanical Sciences 32,
455-464. Free vibration analysis of isotropic and orthotropic triangular plates.
5. K. M. Liew 1993 Journal of Sound and Vibration 165, 329-340. On the use of pb-2 Rayleigh—Ritz
method for free-flexural vibration of triangular plates with curved internal supports.
6. K. M. LiEw and M. K. LM 1993 Journal of Sound and Vibration 165, 45-67. Transverse vibration
of trapezoidal plates of variable thickness: symmetric trapezoids.
7. H. T. SALIBA 1990 Journal of Sound and Vibration 139, 289-297. Transverse free vibration of
simply supported right triangular thin plates: a highly accurate simplified solution.
8. H. T. SALIBA 1995 Journal of Sound and Vibration 183, 765-778. Transverse free vibrations of right
triangular thin plates with combinations of clamped and simply supported boundary conditions:
a highly accurate simplified solution.
9. C. S. KiM and S. M. DICKINSON 1990 Journal of Sound and Vibration 141, 291-311. The free
flexural vibration of right triangular isotropic and orthotropic plates.
10. S. MIrzA and M. BUULANI 1985 Computers & Structures 21, 1129-1135. Vibration of triangular
plates of variable thickness.
11. K. M. Liew, C. W. LiMm and M. K. LiM 1994 Journal of Sound and Vibration 177, 479-501.
Transverse vibration of trapezoidal plates of variable thickness: unsymmetric trapezoids.
12. B. SINGH and V. SAXENA 1996 Journal of Sound and Vibration 177, 471-496. Transverse vibration
of triangular plates with variable thickness.
13. O. G. McGEE and G. T. Giaimo 1992 Journal of Sound and Vibration 159, 279-293.
Three-dimensional vibrations of cantilevered right triangular plates.
14. S. KiTiporRNCHI, K. M. LIEW, Y. XIANG and C. M. WANG 1993 International Journal of
Mechanical Sciences 35, 89-102. Free flexural vibration of triangular Mindlin plates.
15. K. M. LIEw, K. C. HUNG and M. K. LiM 1994 AIAA Journal 32, 2080-2089. Three-dimensional
elasticity solutions to vibration of cantilevered skewed trapezoids.
16. T. SAKIYAMA and M. HUANG 1998 Journal of Sound and Vibration 216, 379-397, Free vibration
analysis of rectangular plates with variable thickness.



FREE-VIBRATION ANALYSIS 857
APPENDIX A

F111 = F123 = F134 = F146 = F167 = F178 = FISS = 1» F212 = Fzzs = F233 = F257 = F266
=K

Fise =v, Fu;=vu, Fy=F31=—u Fus=Fss=—1, Fgsg=—J, F,=—kK
Fy77 =1, Fgy = —pux, Fg6 =pu, other Fy,, Foyp, F5,. =0,
I=u(1=v*)(ho/h)*, J =2u(1+v)(ho/h)’, K = (1/10)(E/G)(ho/a)*(ho/h).

APPENDIX B

Apr =7p1> Ap2 =0, Apz=7p2, Apa=7p3, Aps =0, Aps=7pa+Vyps, Ap1 =705
Aps = Vp7. Bp1 =0, Bpo=uyp1, Bps=ups, Bpa=0, Bps=pyp2, Bpe = ype>
By = u(vypa + vps)s Bps = Vpss  Cpra = U(Vp3 + Ki¥p7)y  Cpou = W)p2 + Kid)pss

Crait = JuVpe>  Cpart = IuVpas  Cpsiu = TuVps,  Cporr = —10p7,  Cpma = —7ps>
Cosiu=0, [l =[Tpl™ " T11=Pu» Tiz=uPjjs Tao=—uPijy T23=Pi» 725=ubjj,
V31 = _,“ﬁijs 733 :Nﬁjj’ T34 =Pi» Taa= _Iijﬁija Vae = Pii» Jar= /Wﬁjjs Vss = _Iijﬁijs
Tse=VBis Ts1=uBjj» Tes=—Jiifij» Tes=uBjj» Te1=Pii» T71=—WKiiBijs  T76 = 1Bij>

778 = Bi» Vg2 = _Kijﬁijy V87 = ﬁijv Vg = ﬁjjs other Yok = 0, ﬁij = ﬁiiﬁjj-

APPENDIX C
A11i0i1 = A13i0i2 = A14i0i3 = A16i0ia = A17i0i5 = A18i0i6 = 1 Ays5i0i3 = V,
Az20jj1 = A230jj2 = A250jj3 = A260jj4 = d270jj5 = A280jj6 — 1, A240jj3 =V, Q230002 = 0,

3 Z ﬁikApe [ahekOuv - ahekjuv(1 _5ki)] + Z ﬁlepe [aheOIuv - aheiluv(l _511‘)]
k=0 =0
ahpijuv = Z,l ; i
+ Y Y BB Cpektnertun(1—04i01),
k=01=0
where h=1,2, p=1,2,...,8, i=1,2,....m, j=1,2,...,n, v=1,2,...,6, u=0,1,...,i
(h=1),01,....j (h=2),

Z ﬁikApe [qfekOCd - qfekjcd(l —0;)] + Z leBpe [qfeOch - qfeilcd(l —511')]
k=0 1=0
4 rpijed = Zl P

+ Z z ﬂikﬁjlcpeklfIfeklcd(l—5ki51j)

k=01=0

i Jj
— Vor Z Z Ui Uj U gy
k=01=0
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where

P 0 non-existing point support,
M1 existing point support,

Z ﬁikApe[q_ekO - q_ekj(l - 5ki)] + Z ﬁlepe[qem - q_eil(l - 5lj)]
k=0 =0

qpij =
e

I e
M-

1 i _
+ Z Bik BitCperiders(1 — 01615
k=01=0

— Vp1UigUjp.
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